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THE METHOD OF ASYMPTOTIC INTEGRATION AND THE "METHOD OF SPRINGS" 
IN PROBLEMS OF ELASTIC PLATES WITH AN ELONGATED CUT* 

R.V. GOL'DSHTEIN and L.B. KOREL'SHTEIN 

A class of problems in the theory of the elasticity of plates with an 

elongated non-through cut under arbitrary loading is analysedby the 

method of asymptotic integration /l-3/. An asymptotic solution in a small 

parameter (the ratio of the plate thickness and the length of the cut is 

constructed as the sum of an external solution corresponding to the two- 

dimensional problem of plate theory and an internal solution corresponding 

to the boundary layers in a zone of order h near the cut as well as the 

plate boundaries. 

It is shown that the cut affects the elastic state of deformation in 

the plate (outside the boundary layers) in the second term of the external 

solution resulting in jumps in the kinematic and force factors on the line 

of the cut. Equations are obtained that express the jumps mentioned in 

term of the geometrical parameters of the cut and the energy character- 

istics of the first terms of the internal solution that is the state of 

plane and antiplane strain of a strip with the cut under the action of 

loads on the surface of the cut governed by the forces and moments of 

the first term of the external solution on the line of the cut. After 

the solution of the appropriate plane and antiplane problems for the first 
term of the internal solution, determination of the second term of the 

external solution reduces thereby to a problem in the theory of plates 

with the boundary conditions on the line of the cut and the edges of the 
plate. The second term of the asymptotic form of the boundary layer near 

the cut is the solution of more complex plane and antiplane problems for 

a stripwith a cut, with a load including volume and surface forces 

associated with the change in the first term of the solution for the 
boundary layer along the cut. 

Starting from the equation obtained in the case of a cut that is an 
extended rectilinear surfacecrack (normal to the plate surface) for both 
symmetric and antisymmetric loading approximate boundary conditions can 

be formulated on the line of the crack for a binomial asymptotic form of 

the external solution, which enables us to pose a problem in the theory 
of plates taking the influence of cracks into account. For symmetric 
loading these boundary conditions reduce to equations of the known Rice- 

*Prikl.Matem.Mekhan.,52,4,666-674,1938 
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Levy method of springs /4-l/ and for antisymmetric loading are new 
equations of similar structure, whose physical meaning is clarified in the 
paper. the stress intensity factors on its contour can be determined 
approximately from the force and moments ontheline of cracks found by 
using these equations. 

The problem of a surface crack in a unbounded plate under antisym- 
metric loading is considered as an example. Thisreducestoa systemoftwo 
singular integral equations, which can be solved numerically. Results 
are presented of a computation for a semi-elliptical shape. 

1. Consider a plate given in Cartesian coordinates mj by the relations (x,,x%)~D, 
1 x8 (< h/2 (D is a certain plane domain). Let R(l) be a plane curve of length 2L within 
the domain D (Fig.I), and let the parameter 1~ [-L,L] be the spacing along the curve from 
its centre L> h. we introduce an orthonormal tripiet of vectors t(Z) = &t(l)/ dl,v(Z) = 
es x t (4, ea, a curvilinear orthogonal coordinate system lrm,zJ, i.e., x(l,m,x,) = R (1) f 
mv (4 + xae8 and also the dimensionless coordinates 

Fig.1 Fig.2 

We assume that the plate contains an elongated cut R (internal or surface) that occupies 
a domain determined by the relationships f(z, Y,Z),<O, 1 x 191, 12 1 Q 1 in .r, Y, 2 coordinates 
(f is a fairly smooth function) so that in each section x = x0 the domain of the cut 

Q (so) = {(Y, Z) I f (% y, 4 Q 0, I 2 I < 11 

is internal or adjoins Z = 1 (Fig.2). Let the plate surfaces Z = +1 be loaded by the 
pressure P* 6% 49 respectively, while the surface r of the cut in the case of an internal 
cut is force-free, and is loaded by the pressure p+(zl,z,) in the case of an edge cut. 
Certain boundary conditions are given on 'rn (their exact form isnotimportant here). 

We consider the asymptotic behaviour of the solution of the problem mentioned in the 
small parameter e= h12L (actually, we limit ourselves to the first two terms of the 
asymptotic form in this paper). 

We introduce the dimensionless stress and displacement 

(Jj,O = a&J,, ujO= 2pu* / (0,L) 

where a0 is the characteristic quantity p+(x,,x,) and p is the shear modulus. 
We will construct the asymptotic form as 

utO=u,p + U*b + U,d, o*jO=ojjp + cjj" + %P ,(l.l) 

where uip, aijP are the dimensionless displacement and stress far from the edge rn and the 
cut, b 111 1 Uijb, Uld, %ld are the displacement and stress of edge effects near rn and the cut 
important at distances of the order of h from them and damping exponentially with distance 
from rD and 61. 

III the general case, the edge effect near the ends of the cut should also be taken into 
account; however we shall consider these ends as not too "blunt" in this paper so that the 
influence of the mentioned edge effect in the terms of the asymptotic form under consideration 
need not be taken into account far from the cut and near its centre part. 

The method of constructing the quantities ulb,ojjb and the refined boundary conditions 
in IQ, ojj" at the plate edges obtained by taking them into account is known /l-3/. In this 
paper we examine the method of constructing the quantities utd,aijd and the corresponding 
conditions for ulp,ujjp on the line of the cut. When solving probIems of bounded plates with 
cuts here it is necessary to use the equations obtained below in conjunction with the boundary 
conditions /l-3/; it is not required to use these in the problem of an unbounded plate with a 
cut (see Sect.3). 

The asymptotic form uiP, ajj" of an elastic field in a plate far from inhomogeneities has 
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the form /7/ 

(1.2) 

(here and henceforth the summation is over n between n = 0 and n = CG) and should satisfy 
the equilibrium equations S$)j = 0, the Hooke's law relationships, and the conditions on the 

surfaces X,=&l. Using these conditions, it can be shown in particular that the first two 

terms of the asymptotic form satisfy relationships of the theory of plate bending and tension 

(v is Poisson's ratio) 

V$"'= &)(X1, X,), T/P)= @(X1. X,) -- .ZW$' (1.3) 
SW = &) + znzp, 2, Sip = @ + z&), Sf’ = 1, 2 (1 _ p) &’ 

(n) (n) (n) T&ii = (1 - V)-’ (Ui, i + Wj, j), ml:') z.zz - (1 - v)_’ (wf;! + VW!;+) 

,!?) = yz (J”). + ,!‘?) (“) nij = - &j, d”’ = - (1 - q-1 vawy* 

ids(o) = 1,: ;s+ c ‘i_) + 31, (S, - S_)(Z - V3Z3), s,p = 0 

(1 + Y)(l - v,-‘(VI:! + Ul’;;‘),i + v2vp = 0 

V’zm = 31, (1 - Y)(S+ - S_), V4l/+) = 0 

(n = 1, 2; (i, j) = (1,2) or (2,1); S* = p*/uo). 

Since the forces are given on the surface of the cut, the stresses for the boundary layer 

near the cut should be of the same order as the stresses for the ex,ternal solution (1.2), i.e., 

E-%.O. Since the characteristic linear dimension of the boundary layer equals h, the dis- 

placements for the boundary layer should be of the order of e-*s,h~-r = 2L~L-10,e-? Consequently 

we seek the asymptotic form gild, uid as 

zQd=E-%!,n)(x, Y ,Z)&n, (Sijd = 8-%l;'(x, Y,Z)&" (1.4) 

Terms of the expansion (1.4) should satisfy (asymptotically) the equilibrium equations 

and the Hooke's law relationships /2/, as well as homogeneous equations on the plate surfaces 

09 (x, Y, &l) = & (cc, Y, 21) = 0B (x, Y, +1) = 0 

and vanish at infinity (nid+ 0, oljd-+O as 1 Y j---f cm). Moreover, the field uifd + utj" should 

asymptotically yield given forces on the surface r of the cut. Finally, since the components 

of the expansion (1.2) can generally experience a discontinuity when passing throughthesurface 

y = 0 (corresponding to the cut), it must be required that uId + nip, aild + crijp asymptotically 

satisfy the force and displacement continuity conditions when passing through the surface 

Y = 0 outside the cut. 

Taking into account the relationships given above, the problem for each term of the 

asymptotic form (1.4) can (as in /2/ be reduced for each fixed I =x0 to the plane and anti- 

plane problems of an infinite strip with a cut a(~,) loaded by certain surface and volume 

forces expressed in terms of the previous terms of the asymptotic form (1.4) and terms of the 

asymptotic form (1.2). The conditions at the jumps of the terms of the asymptotic form (1.2) 

are here selected for y = 0 so as to ensure the existence of solutions of the corresponding 

plane and antiplane problems as well as the continuity of the displacements and forces for 

Y = 0. 
In accordance with the above we consider the relationships for the first terms of the 

asymptotic forms (1.2) and (1.4). Since the order of the first term of the asymptotic form 

ui* is greater than the order of the asymptotic form uid, it follows from the condition of 
continuity for the displacement that the function .V,(O) (x, y,Z) is continuous for y=O, i.e., 
the jumps in the displacements and the angles of rotation of the middle surface are zero for 
yzo: 

Au,(o) = Aq,W = ~~'3 = L\u',/o)=O (1.5) 

The conditions at the jump S,/') are obtained when considering the plane and antiplane 
problems for uil@) for n = 0 and 1. For the existence of a solution that damps out at 
infinity for these problems, the external forces applied to a half-strip with a cut should be 
balanced, i.e., for any x the following quantities should equal zero: 

1) The principal vector of the body and surface forces in the antiplane problem QJ”) ; 
2) The principal vector of the body and surface forces in the plane problem @An) ~(5) + 

QFe s ; 
3) The component in t (5) of the principal moment of the body and surface forces in the 

plane problem M,@). 
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It can be verified that the relationships Qs(o) = 0 are satisfied automatically, while 
the relationships Qr@) = Q,(o) = M,(o) =0 determine the zero jumps of the forces n,,(o), nJ@ 
and the moment myy(@. Since the stress from the transverse forces is an order of magnitude 
smaller than the shear stress the jump in the transverse force %I@) is found from the con- 
dition Qs(r) = 0. Hence 

An$$=A,n$,)=Am',O,)=Aq$@ + Am!$,.=O (1.6) 

Relations (1.5) and (1.6) shows that P,(o) and stl(0) are continuous for y=o and 
are determined just by relations (1.3) and the boundary conditions on rn, i.e., the elastic 
field in the plate to a first approximation "does not notice" the cut. 

Taking (1.6) into account, we reduce the plane and antiplane problems for the stress sJ") 
for each x to the determination of the stresses that vanish at infinity cij * zz c*,(O) in a 
strip with a cut loaded only on the surface I'(r) of the cut and such that the forces on the 
surface P(a) compensate the forces from Sij@) 

c:rnr + o$sns=- S!$(z,O,Z)n Y, Gyny + oLm = - St; (r, 0, Z) ny ((1.7) 

o*zrnr+u:znz=o (Y,z)Er(s) 

S$L(r, O,Z)=n2J((s,O)+ Zm$J(z,O) +x=2, y) 

Since crf,* - 0 as Y--t&30, we have for the displacement ul* in the corresponding plane 
and antiplane problem 

u,* (5, Y, Z) = u$” + 0 (I), uy* (2, Y, 2) = up + ze*- + 0 (1) 
uz* (x, Y, Z) = UZfm - Ye+ + 0 (I), Y - +x, 

while the displacements u1(0) are expressed in terms of ui* as follows: 

u$)=ur* - l&x, u~'=uy* - ur"-Z@, 

uP)=uz* - UZh + YW" 

(1.8) 

and are defined uniquely (while ut* are determined to the accuracy of a rigid displacement 
and a rotation), and satisfy the condition ui(O)-+O as 

The condition of continuity uid + uiP for Y = 0 
Y-+-&XL 
outside 66 for terms of the order of 

s-a and C' is sought taking (1.8) into account in the form 

A&)=0, Av:'=(u,),, Avt"=(uy},, A@;=- (8}-. (1.8) 

A&)= (us)_ 

(U,&=U~- - u,", (ej,=e+--e-- (cc=cc,Y,~) 

i.e., the jumps in the displacements and the angles of rotation are expressed in terms of the 
relative displacements and rotations of the ends of the strip. 

The quantities {I&.._, {ur)_, {8), can be expressed in terms of the power and geometrical 
characteristics of a strip with a cut. To do this it is sufficient to write the relationship 
of the Betti reciprocity theorem for an elastic field ul*, at,* and, respectively, for the 
fields of a homogeneous antiplane shear, a homogeneous plane strain, and pure bending of the 
strip. Therefore the following relationships are easily obtained: 

Au:)= {u&z = U: + Wxn 

Av:"={uy),= U," +'/a(1 -v) WV” 

AID(') ~0, - ',@w~; ='/@).. =UYm + i/a(l - V) W,” 

(1.10) 

Here 

W,(z)= 1s ikdYdZ,- Art”x)=$- 5 kfiny dS 

Q(X) r(X) 
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A;"'(m)=-& 1 uamnydS-_ s Zu,"nrdS, 

r(x) r(T) 

A;“’ (x) = + 1 Zuamny dS (a = GY) 

w4 

Values of the forces and moments are taken for y = 0; the quantities &nl em (a = r, Y) 
are the displacement ~a* for a load (1.7) on r(z) corresponding to the cases of unit force 

(n&V%;,oVZ) = 1, m&o) (z, 0, Z) = 0) and unit moment (r&o) (2, 0, Z) = 0, m&(O) (x, 0, Z) = 1). 
, the coefficients W and A depend only on the shape and location of the cut &-J (I) 

(and the coefficients Aynn, Aynm, A,“‘* on Poisson's ratio v also), and have the following 
meaning: Wk (x) are the geometric moments of the domain 61 (5) and A is the dimensionless 
energy (mutual energy) of the solutions of the plane (antiplane) problems about a strip with 
a cutout loaded on r (3) by forces corresponding to a unit force and moment. 

To close the problem for the second term of the asymptotic form (1.2), four more relations 
must still be obtained on the jumps of the forces and moments for y = 0. They are obtained from 
the conditions Q.Jr) = Qy(') = Q.#') = M,(r) = O- and can, after rather lengthy reduction, be 
reduced to the following form: 

An% + An:l$~=[(W,"t],~ .=" (1.11) 

r/,Am':t = ]lJ," + W,“], x - k(x) W,“’ 

‘/s [A$’ + Am!&! xl = Ik (4 W,“’ + W,“) + Wz: xl. x 

Iy=A”w: ;:HR~t:y$J 

(k(x) is the dimensionless curvature of the curve R(x): dtldx = -k(x)v). 
After solving the problem of plate theory for Vi(r) and S#),defined by relations (l-3), 

(l.lO), (1.11) and the boundary conditions on rn, the problem for the second term of the 
asymptotic form (1.4) can be formulated completely. The relations obtained here are not 
presented because of their complexity. 

2. In the special limiting case of the problem in Sect-l, when a rectilinear surface 
crack normal to the surface Z = 1 that occupies the domain Ix I <I, Y = 0, 1 - 26(r),<Z.<l 

(0 Q 6 < I)* is taken as the cut, the formulas in sect.1 simplify considerably. We introduce 
dimensionless forces, moments and displacements of the middle surface while restricting our- 
selves to two terms of the asymptotic form 

v x = JO) r + ev!", v,=$ + El?:", WE w(O) + swu, 

nil = n$' + e@ etc. 

and we write relations (1.5), (1.6), (1.10) and (1.11) in terms of them while neglecting terms 
of the order of ea. We here represent the state of stress and strain of.a plate as the sum of 
symmetric and antisymmetric components relative to the y = 0 plane and we consider each of 
them separately. 

Symmetric loading. In this case the relationships of Sect.1 yield on the line y = X, = 0 

Au, = e (A,““n,, + A;“m,,) (2.1) 

- '/aAw , y = e (A?‘n,, + 4”‘hJ 

i.:;, the equations of the Rice-Levy "spring model". In this case the coefficients A;“, Aim, 

A, as functions of 6 and v have been evaluated and tabulated /6/. 
Relationships for the stress intensity factors (to sp accuracy) 

KI 1 K" = KI" (5 (2)) nyy (2, 0) + ZGrn (6 (s))mvV (2, 0) (2.2) 
KIr = KI1, = 0 (K” = h%, f/nhc(x)) 

can be obtained from the relations for the first two terms of the asymptotic form (1.4), where 
the dimensionless intensity factors KI”, KI” are known /8/ in the plane problem of a strip 
with an edge crack loaded by a unit constant and linear load. 

Antisymmetric loading. In this case the relationships of Sect.1 on the line y=x,=o 
yield 

Au, = e ( A~“Tz,~ + A:“m,,) (2.3) 

‘IsAm,,, = e ( AY’nly + AY”m,,), I 
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Eqs.(2.3) show that under antisymmetric loading a surface crack can be modelled by a 
through crack with linear elastic connections between the edges and an additionally applied 
bending moment. 

The difference between (2.1) and (2.3) can be clarified as follows. Eqs.CZ.1) areobtained 
for the symmetric case if it is assumed /4/ that the elastic field near the crack is a plane 
strain (solution of the problem of the tension and bending of a plane strip with a notch at 
each section += zO), andthe<additional displacement and rotation of the ends of the strip 
relative to each other that occur because of the presence of the notch are taken into account 
in determining the far field. Analogously, (2.3) can be, obtained if it is considered that the 
elastic field near the crack is antiplane strain (the solution of the problem of the antiplane 
shear of a strip with a notch) and the additional relative displacement of the strip ends (the 
first equation in (2.3)) is taken into account in determining the far field. However, in this 
case it is also necessary to take into account that, unlike the symmetric case, the domain 
adjoining the crack is not balanced completely for stresses selected by the mode mentioned. 

Indeed, if a thin layer /S/<~,Z~~~~Z,+ AZ, containing part of the crack is examined, 
it can be shown that the additional elastic field due tothenotch yields forces whose total 
moments about the r axis differ from zero on the surfaces t=z,,r= zg+ AZ. Since the 
additional elastic field depends on I, we obtain that a non-zero moment acts on the layer under 
consideration, which should be balanced at infinity, i.e., from the far field side. This means 
that the latter should have an appropriate jump in the bending moment on the crack, which is 
the second equation of (2.3). 

In this case we have for the stress intensity factors 

where Kk, I% are factors analogous to Kr”,Kl”‘, the factors for the antiplane problem. 
From (2.4) we have for the specific energy increment during crack growth 

GWl&S = '1%~ (K"P IV&z,, + K;frrm,Js + o (s)l (2.5) 

The quantities 

A=“, A?, A:“, Ki’f,, K,;tr cw 

can be found by solving the appropriate antiplane problem by methods of the theory of functions 
of a complex variable. We consequently obtain 

Gk=8 tg$-tF'(sinG-t)dt (k=OJ,2), 
s 
0 

#l?M 
I.(t)=i-+ @+*),=1 - 2 [Li, (t) - Li, (- t)], 

Fig.3 shows graphs of the quantities (2.6) as a function of 6 (the dashed curves 1-3 
and the solid curves 1 and 2, respectively). 

3. As an example of the application of Eqs.(2.3) presented in Sect.2,weconsider the 
problem of an edge crack in an infinite plate under antisymmetric loading. In this case the 
elastic field is the sum of a uniform field that would occur in a plate without the crack 
(denoted below by the superscript oo) and the perturbation from a crack that damps out at 
infinity (denoted by the superscript c). The first field is continuous for g= 0, while 
for the second system (2.3) is written in the form 

Av~c=Aw~y=An~V=Aqyc + Am&,r=~C=nCyy=O 
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Solving the problem of the theory of plate tension and beding given by (1.3) and (3.1) 
for the perturbation field from the crack, it can be shown that 

(3.‘) 

where the integrals are understood in the principal value sense, the notation 

6 (~1 = c (A:llln,r,, + A?n'm,,) (3.3) 

is introduced, and the second relationship of (3.1) is used. Taking account of (3.1) and 
(3.2) the problem reduces to a system of singular integral equations whose form is analogous 
to the corresponding equations of the method of springs /6/ 

Av,e (x) - EfA:* (5 (x)) + EJA?-" (5 (4) = (3.4) 

E IA:" (5 (3)) n.Ty (x, 0) + AY (5 (z))mG (2, 0)l 

6 (.z) - &IA:" (c (5)) + &fA=inr (5 (I)) = 

E IAY (5 (x))n:u (3, 0) + AT" (C (d)m,m, (xt o)l 

Therefore, if the stresses are known in a plate without a crack, the problem reduces to 
solving two singular EqS.(3.4) which can be solved numerically (by the method of mechanical 
quadratures /8/, say), after which the quantities KIlI and &W/&S governing the possibility 
and growth rate of the crack in the case under consideration can be found from (2.4) and (2.5) 
by finding the quantities nsU (z, 0) and m,,(r, 0) from (3.3) and the first equation of (3.1). 

Fig.3 

0 0.2 O.‘I 

Fig.4 

As a specific example we considered a semi-elliptical crack t;(z)=xl/l-xyld under a 
uniform shear load (n,,"(z,O) = nSym= cons& mXyw(~,O) =O), Eqs.(3.4) were solved approximately 
by the method of mechanical quadratures on a computer for different values of e and x character- 
izing the elongation and relative depth of the crack. According to (2.4) and (2.7), we here 
have Kr= XII-_ 0 (from the symmetry of the problem) at the apparently most dangerous point 
of the contour corresponding to Z= 0 (from the viewpoint of crack growth), and 

K III = K'KYr;,, (x) R;;r (8, X. v) %,m (0. 0) (3.5) 
(A&r fs, x, v) = In,, (0, 0) + wXu (0, 0) F ~~ia%s~)l!~,~~ (0, 0)) 

where %I is a dimensionless coefficient reflecting the influence of the spatial geometry 
of the problem. Graphs of its dependence on E for v=Oz3 are shown in Fig.4. 

The results of calculations show that as the crack elongation decreases (i.e., as e 
grows), the intensity factor K,,, decreases, where for sufficiently deep cracksitis essential 
that the strength of structures with cracks of the kind under consideration should be taken 
into account in the calculations. Only cracks of quite small depth (x~~0.1 and less) are an 
exception for which a calculation shows that because of the action of the bending moment mW 
due to the presence of the crack the factor K,,r increases insignificantly (fractions of a 
percent) as e increases. 

The results obtained for not too "shallow" cracks are quite similar to the results for 
separation cracks /5-7/, by as x increases the factor K,,, decreases rather more slcwly than 
K, as compared with the case of a separation crack. 
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THERMOELASTIC STRESSES IN A HALF-SPACE HEATED 
BY A CONCENTRATED ENERGY FLUX* 

L.N. GERMANOVICH, I.D. KILL and N.S. TSODOKOVA 

An exact solution is obtained fort!he,problem and also a simple approximate 
solution convenient for computations for small times (its errorisestimated) 
that is valid for any absorption coefficients. In the special case of a 
zero absorption coefficient, the solution is simplified and can be written 
in elementary functions (an example is presented). In this case new 
qualitative features of the stress field are found that are not inherent 
in other methods of heating the half-space. For fairly large absorption 
coefficients (a criterion is given), a still more simple and convenient 
closed solution for computations is successfully obtained which can also 
be expressed in terms of elementary functions (an example is presented). 
In the case of both large and small absorption coefficients the stress 
field is analysed and its isolines are constructed. 

In a number of cases, temperature stresses that can be the cause of brittle fracture /l- 
5/ can occur in a solid subjected to a constant energy flux (a laser beam, an electron beam, 
etc.). The temperature stresses inthebody under exposure are studied below on the basis 
of the extensively utilized model of an elastic half-space (/2-l/, say). It is assumed that 
internal distributed heat sources whose density decreases exponentially with depth (Bouger's 
law /5, 8/l act in the half-space. Convective heat transfer from a zero-temperature medium 
occurs on the half-space boundary. This model is quite adequate and allows a determination 
of the thennoelastic stresses at both great depths and at depths of the order of the character- 
istic absorption scale or less. 

The plane thermoelasticity problem for a half-space with heat sources was solved in /9/. 
However, real high-energy beams ordinarily possess axial symmetry. , The temperature and thermo- 
elastic stresses in the half-space in /3/ were found by numerical integration of two improper 
integrals, in the form of which the exact solution is represented, for the case of a uniform 
energy distribution over the transverse section of a cylindrical beam. An attempt to construct 
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